Improving the performance of reliable transport protocols in mobile computing environments

  • Authors:
  • R. Caceres;L. Iftode

  • Affiliations:
  • AT&T Bell Labs., Holmdel, NJ;-

  • Venue:
  • IEEE Journal on Selected Areas in Communications
  • Year:
  • 2006

Quantified Score

Hi-index 0.08

Visualization

Abstract

We explore the performance of reliable data communication in mobile computing environments. Motion across wireless cell boundaries causes increased delays and packet losses while the network learns how to route data to a host's new location. Reliable transport protocols like TCP interpret these delays and losses as signs of network congestion. They consequently throttle their transmissions, further degrading performance. We quantify this degradation through measurements of protocol behavior in a wireless networking testbed. We show how current TCP implementations introduce unacceptably long pauses in communication during cellular handoffs (800 ms and longer), and propose an end-to-end fast retransmission scheme that can reduce these pauses to levels more suitable for human interaction (200 ms). Our work makes clear the need for reliable transport protocols to differentiate between motion-related and congestion-related packet losses and suggests how to adapt these protocols to perform better in mobile computing environments