An MILP-based aging-aware routing algorithm for NoCs

  • Authors:
  • Kshitij Bhardwaj;Koushik Chakraborty;Sanghamitra Roy

  • Affiliations:
  • Utah State University;Utah State University;Utah State University

  • Venue:
  • DATE '12 Proceedings of the Conference on Design, Automation and Test in Europe
  • Year:
  • 2012

Quantified Score

Hi-index 0.00

Visualization

Abstract

Network-on-Chip (NoC) architectures have emerged as a better replacement of the traditional bus-based communication in the many-core era. However, continuous technology scaling has made aging mechanisms such as Negative Bias Temperature Instability (NBTI) and electromigration primary concerns in NoC design. In this paper, we propose a novel system-level aging model to model the effects of asymmetric aging in NoCs. We observe a critical need of a holistic aging analysis, which when combined with power-performance optimization, poses a multi-objective design challenge. To solve this problem, we propose a Mixed Integer Linear Programming (MILP)-based aging-aware routing algorithm that optimizes the various design constraints using a multi-objective formulation. After an extensive experimental analysis using real workloads, we observe a 62.7%, 46% average overhead reduction in network latency and Energy-Delay-Product-Per-Flit (EDPPF) and a 41% improvement in Instructions Per Cycle (IPC) using our aging-aware routing algorithm.