A novel 3-D FPGA architecture targeting communication intensive applications

  • Authors:
  • Harry Sidiropoulos;Kostas Siozios;Dimitrios Soudris

  • Affiliations:
  • -;-;-

  • Venue:
  • Journal of Systems Architecture: the EUROMICRO Journal
  • Year:
  • 2014

Quantified Score

Hi-index 0.00

Visualization

Abstract

The interconnection structures in FPGA devices increasingly contribute more to the delay, power consumption and area overhead. The demand for even higher clock frequencies makes this problem even more important. Three-dimensional (3-D) chip stacking is touted as the silver bullet technology that can keep Moores momentum and fuel the next wave of consumer electronics products. However, the benefits of such a new integration paradigm have not been sufficiently explored yet. In this paper, a novel 3-D architecture, as well as the software supporting tools for exploring and evaluating application implementation, are introduced. More specifically, by assigning to different layers logic and I/O resources, we achieve mentionable wire-length reduction. Experimental results prove the effectiveness of such a selection, since target architectures outperform the conventional 2-D FPGAs.