Design methodology for synthesizing clock distribution networks exploiting nonzero localized clock skew

  • Authors:
  • José Luis Neves;Eby G. Friedman

  • Affiliations:
  • -;-

  • Venue:
  • IEEE Transactions on Very Large Scale Integration (VLSI) Systems
  • Year:
  • 1996

Quantified Score

Hi-index 0.00

Visualization

Abstract

An integrated top-down design methodology is presented in this brief for synthesizing high performance clock distribution networks based on application dependent localized clock skew. The methodology is divided into four phases: (1) determining an optimal clock skew schedule composed of a set of nonzero clock skew values and the related minimum clock path delays; (2) designing the topology of the clock distribution network with delays assigned to each branch based on the circuit hierarchy, the aforementioned clock skew schedule, and minimizing process and environmental delay variations; (3) designing circuit structures to emulate the delay values assigned to the individual branches of the clock tree; and (4) designing the physical layout of the clock distribution network. The clock distribution network synthesis methodology is based on CMOS technology. The clock lines are transformed from distributed resistive capacitive interconnect lines into purely capacitive interconnect lines by partitioning the RC interconnect lines with inverting repeaters. Variations in process parameters are considered during the circuit design of the clock distribution network to guarantee a race-free circuit. Nominal errors of less than 2.5% for the delay of the clock paths and 7% for the clock skew between any two registers belonging to the same global data path as compared with SPICE Level-3 are demonstrated.