Built-In Test Sequence Generation for Synchronous Sequential Circuits Based on Loading and Expansion of Input Sequences Using Single and Multiple Fault Detection Times

  • Authors:
  • I. Pomeranz;S. M. Reddy

  • Affiliations:
  • -;-

  • Venue:
  • IEEE Transactions on Computers
  • Year:
  • 2002

Quantified Score

Hi-index 14.98

Visualization

Abstract

We describe an on-chip test generation scheme for synchronous sequential circuits that allows at-speed testing of such circuits. The proposed scheme is based on loading of (short) input sequences into an on-chip memory and expansion of these sequences on-chip into test sequences. Complete coverage of modeled faults is achieved by basing the selection of the loaded sequences on a deterministic test sequence T_0 and ensuring that every fault detected by T_0 is detected by the expanded version of at least one loaded sequence. Specifically, each input sequence S is constructed based on a different fault f and is extracted from T_0 around a time unit where f is detected by T_0. Experimental results presented for benchmark circuits show that the length of the sequence that needs to be stored on-chip at any given time is, on the average, 11 percent of the length of T_0 and that the total length of all the loaded sequences is, on the average, 48 percent of the length of T_0. These results are obtained by extracting each sequence S around the first detection time of a target fault f. These results are further improved by considering several time units for every target fault f and selecting the shortest possible sequence based on f.