Throughput-centric routing algorithm design

  • Authors:
  • Brian Towles;William J. Dally;Stephen Boyd

  • Affiliations:
  • Stanford University;Stanford University;Stanford University

  • Venue:
  • Proceedings of the fifteenth annual ACM symposium on Parallel algorithms and architectures
  • Year:
  • 2003

Quantified Score

Hi-index 0.00

Visualization

Abstract

The increasing application space of interconnection networks now encompasses several applications, such as packet routing and I/O interconnect, where the throughput of a routing algorithm, not just its locality, becomes an important performance metric. We show that the problem of designing oblivious routing algorithms that have high worst-case or average-case throughput can be cast as a linear program. Globally optimal solutions to these optimization problems can be efficiently found, yielding provably good oblivious routing algorithms. Applying these techniques to k-ary 2-cube (tori) networks shows that previous routing algorithms sacrifice too much locality to achieve optimal worst-case throughput. This motivates the development of two new algorithms, IVAL and 2TURN, which improve locality to within 0.3% of optimal for an 8-ary 2-cube. Both algorithms have simple, deadlock-free implementations. Expanding the analysis of tori to average-case throughput reveals that there is a weak tradeoff between average-case and worst-case throughput. Specifically, both the IVAL and 2TURN algorithms developed for the worst-case also have good average-case throughput.