Near real-time shadow generation using BSP trees

  • Authors:
  • Norman Chin;Steven Feiner

  • Affiliations:
  • Department of Computer Science, Columbia University, New York, NY;Department of Computer Science, Columbia University, New York, NY

  • Venue:
  • SIGGRAPH '89 Proceedings of the 16th annual conference on Computer graphics and interactive techniques
  • Year:
  • 1989

Quantified Score

Hi-index 0.00

Visualization

Abstract

This paper describes an object-space shadow generation algorithm for static polygonal environments illuminated by movable point light sources. The algorithm can be easily implemented on any graphics system that provides fast polygon scan-conversion and achieves near real-time performance for environments of modest size. It combines elements of two kinds of current shadow generation algorithms: two-pass object-space approaches and shadow volume approaches. For each light source a Binary Space Partitioning (BSP) tree is constructed that represents the shadow volume of the polygons facing it. As each polygon's contribution to a light source's shadow volume is determined, the polygon's shadowed and lit fragments are computed by filtering it down the shadow volume BSP tree. The polygonal scene with its computed shadows can be rendered with any polygon-based visible-surface algorithm. Since the shadow volumes and shadows are computed in object space, they can be used for further analysis of the scene. Pseudocode is provided, along with pictures and timings from an interactive implementation.