On Designing and Reconfiguring k-Fault-Tolerant Tree Architectures

  • Authors:
  • Shantanu Dutt;J. P. Hayes

  • Affiliations:
  • Univ. of Michigan, Ann Arbor;Univ. of Michigan, Ann Arbor

  • Venue:
  • IEEE Transactions on Computers
  • Year:
  • 1990

Quantified Score

Hi-index 15.00

Visualization

Abstract

A general approach to designing tree structured multiprocessors with optimal or near-optimal fault tolerance properties is developed. A multiprocessor architecture with a static interconnection network is represented by a graph whose nodes are processors and whose edges are interprocessor communication links. The design of k-fault-tolerant (FT) trees for arbitrary k is considered, with the primary goal of minimizing the number of spare nodes and edges. Also presented are strategies for reconfiguring a k-FT supergraph of a tree T around faults to obtain a fault-free tree isomorphic to T. A systematic methodology is presented for designing k-FT nonhomogeneous symmetry d-ary trees based on a concept termed node covering. The designs are shown to be optimal when kd and near-optimal otherwise. It is also shown that these k-FT designs can be implemented efficiently using switches to share redundant links.