Fault-Tolerant Meshes and Hypercubes with Minimal Numbers of Spares

  • Authors:
  • J. Bruck;R. Cypher;C. Ho

  • Affiliations:
  • -;-;-

  • Venue:
  • IEEE Transactions on Computers
  • Year:
  • 1993

Quantified Score

Hi-index 15.02

Visualization

Abstract

This paper presents several techniques for tolerating faults in d-dimensional mesh and hypercube architectures. The approach consists of adding spare processors and communication links so that the resulting architecture will contain a fault-free mesh or hypercube in the presence of faults. The authors optimize the cost of the fault-tolerant architecture by adding exactly k spare processors (while tolerating up to k processor and/or link faults) and minimizing the maximum number of links per processor. For example, when the desired architecture is a d-dimensional mesh and k=1, they present a fault-tolerant architecture that has the same maximum degree as the desired architecture (namely, 2d) and has only one spare processor. They also present efficient layouts for fault-tolerant two- and three-dimensional meshes, and show how multiplexers and buses can be used to reduce the degree of fault-tolerant architectures. Finally, they give constructions for fault-tolerant tori, eight-connected meshes, and hexagonal meshes.