Vision-realistic rendering: simulation of the scanned foveal image from wavefront data of human subjects

  • Authors:
  • Brian A. Barsky

  • Affiliations:
  • University of California, Berkeley, California

  • Venue:
  • APGV '04 Proceedings of the 1st Symposium on Applied perception in graphics and visualization
  • Year:
  • 2004

Quantified Score

Hi-index 0.00

Visualization

Abstract

We introduce the concept of vision-realistic rendering -- the computer generation of synthetic images that incorporate the characteristics of a particular individual's entire optical system. Specifically, this paper develops a method for simulating the scanned foveal image from wavefront data of actual human subjects, and demonstrates those methods on sample images.First, a subject's optical system is measured by a Shack-Hartmann wavefront aberrometry device. This device outputs a measured wavefront which is sampled to calculate an object space point spread function (OSPSF). The OSPSF is then used to blur input images. This blurring is accomplished by creating a set of depth images, convolving them with the OSPSF, and finally compositing to form a vision-realistic rendered image.Applications of vision-realistic rendering in computer graphics as well as in optometry and ophthalmology are discussed.