Dynamically reparameterized light fields

  • Authors:
  • Aaron Isaksen;Leonard McMillan;Steven J. Gortler

  • Affiliations:
  • Laboratory for Computer Science, Massachusetts Institute of Technology;Laboratory for Computer Science, Massachusetts Institute of Technology;Division of Engineering and Applied Sciences, Harvard University

  • Venue:
  • Proceedings of the 27th annual conference on Computer graphics and interactive techniques
  • Year:
  • 2000

Quantified Score

Hi-index 0.00

Visualization

Abstract

This research further develops the light field and lumigraph image-based rendering methods and extends their utility. We present alternate parameterizations that permit 1) interactive rendering of moderately sampled light fields of scenes with significant, unknown depth variation and 2) low-cost, passive autostereoscopic viewing. Using a dynamic reparameterization, these techniques can be used to interactively render photographic effects such as variable focus and depth-of-field within a light field. The dynamic parameterization is independent of scene geometry and does not require actual or approximate geometry of the scene. We explore the frequency domain and ray-space aspects of dynamic reparameterization, and present an interactive rendering technique that takes advantage of today's commodity rendering hardware.