Frequency analysis and sheared reconstruction for rendering motion blur

  • Authors:
  • Kevin Egan;Yu-Ting Tseng;Nicolas Holzschuch;Frédo Durand;Ravi Ramamoorthi

  • Affiliations:
  • Columbia University;Columbia University;INRIA --- LJK;MIT CSAIL;UC Berkeley

  • Venue:
  • ACM SIGGRAPH 2009 papers
  • Year:
  • 2009

Quantified Score

Hi-index 0.00

Visualization

Abstract

Motion blur is crucial for high-quality rendering, but is also very expensive. Our first contribution is a frequency analysis of motion-blurred scenes, including moving objects, specular reflections, and shadows. We show that motion induces a shear in the frequency domain, and that the spectrum of moving scenes can be approximated by a wedge. This allows us to compute adaptive space-time sampling rates, to accelerate rendering. For uniform velocities and standard axis-aligned reconstruction, we show that the product of spatial and temporal bandlimits or sampling rates is constant, independent of velocity. Our second contribution is a novel sheared reconstruction filter that is aligned to the first-order direction of motion and enables even lower sampling rates. We present a rendering algorithm that computes a sheared reconstruction filter per pixel, without any intermediate Fourier representation. This often permits synthesis of motion-blurred images with far fewer rendering samples than standard techniques require.