High-Performance Low-Power Left-to-Right Array Multiplier Design

  • Authors:
  • Zhijun Huang;Milos D. Ercegovac

  • Affiliations:
  • IEEE;IEEE

  • Venue:
  • IEEE Transactions on Computers
  • Year:
  • 2005

Quantified Score

Hi-index 14.98

Visualization

Abstract

We present a high-performance low-power design of linear array multipliers based on a combination of the following techniques: signal flow optimization in [3:2] adder array for partial product reduction, left-to-right leapfrog (LRLF) signal flow, and splitting of the reduction array into upper/lower parts. The resulting upper/lower LRLF (ULLRLF) multiplier is compared with tree multipliers. From automatic layout experiments, we find that ULLRLF multipliers have similar power, delay, and area as tree multipliers for n \leq 32. With more regularity and inherently shorter interconnects, the ULLRLF structure presents a competitive alternative to tree structures in the design of fast low-power multipliers implemented in deep submicron VLSI technology.