Crosstalk analysis in nanometer technologies

  • Authors:
  • Shahin Nazarian;Ali Iranli;Massoud Pedram

  • Affiliations:
  • University of Southern California, Los Angeles, CA;University of Southern California, Los Angeles, CA;University of Southern California, Los Angeles, CA

  • Venue:
  • GLSVLSI '06 Proceedings of the 16th ACM Great Lakes symposium on VLSI
  • Year:
  • 2006

Quantified Score

Hi-index 0.00

Visualization

Abstract

Process variations have become a key concern of circuit designers because of their significant, yet hard to predict impact on performance and signal integrity of VLSI circuits. Statistical approaches have been suggested as the most effective substitute for corner-based approaches to deal with the variability of present process technology nodes. This paper introduces a statistical analysis of the crosstalk-aware delay of coupled interconnects considering process variations. The few existing works that have studied this problem suffer not only from shortcomings in their statistical models, but also from inaccurate crosstalk circuit models. We utilize an accurate distributed RC-p model of the interconnections to be able to model process variations close to reality. The considerable effect of correlation among the parameters of neighboring wire segments is also indicated. Statistical properties of the crosstalk-aware output delay are characterized and presented as closed-formed expressions. Monte Carlo Spice-based experimental results demonstrate the effectiveness of the proposed approach in accurately modeling the correlation-aware process variations and their impact on interconnect delay when crosstalk is present.