Sparse low-degree implicit surfaces with applications to high quality rendering, feature extraction, and smoothing

  • Authors:
  • Yutaka Ohtake;Alexander Belyaev;Marc Alexa

  • Affiliations:
  • RIKEN;MPI Informatik;TU Darmstadt

  • Venue:
  • SGP '05 Proceedings of the third Eurographics symposium on Geometry processing
  • Year:
  • 2005

Quantified Score

Hi-index 0.00

Visualization

Abstract

We propose a new surface representation delivering an accurate approximation to a set of points scattered over a smooth surface by Sparse Low-degree IMplicits (SLIM). The SLIM surface representation consists of a sparse multi-scale set of nonconforming surface primitives which are blended along view rays during the rendering phase. This new representation leads to an interactive real-time visualization of large-size models and delivers a better rendering quality than standard splatting techniques based on linear primitives. Further, SLIM allows us to achieve a fast and accurate estimation of surface curvature and curvature derivatives and, therefore, is very suitable for many non-photorealistic rendering tasks. Applications to ray-tracing and surface smoothing are also considered.