Digital foam interaction techniques for 3D modeling

  • Authors:
  • Ross T. Smith;Bruce H. Thomas;Wayne Piekarski

  • Affiliations:
  • University of South Australia;University of South Australia;University of South Australia

  • Venue:
  • Proceedings of the 2008 ACM symposium on Virtual reality software and technology
  • Year:
  • 2008

Quantified Score

Hi-index 0.00

Visualization

Abstract

Digital Foam is a new input sensor developed to support clay like sculpting and modeling operations. We present techniques facilitating navigation and manipulation operations performed using Spherical Digital Foam as a sole input device. Our free-form sculpting technique allows manipulation of new and existing 3D models using accumulated sculpting like motions. Digital Foam's multi-point pressure sensitive surface captures the separate locations of a user's fingertips allowing controlled manipulation of multiple model vertices simultaneously. Additionally, we developed a technique that allows the camera view and zoom to be controlled by applying varying pressure to the Digital Foam surface. Furthermore, we have designed a menu system tailored for operation using Spherical Digital Foam as a sole input device using both the internal orientation sensor and the pressure sensitive surface. A new higher resolution Spherical Digital Foam input device with 162 unique pressure sensors is presented. This is a significant improvement in comparison to the previous Spherical Digital Foam version with only 21 sensors. We discuss the design issues and how an increased resolution affects the operation and design of the algorithms used. We propose a new dynamic button allocation technique made possible using the new high resolution Spherical Digital Foam. Finally, we performed a trial study using the new 162 sensor Spherical Digital Foam input device to evaluate elements of the menu system.