Co-optimization of circuits, layout and lithography for predictive technology scaling beyond gratings

  • Authors:
  • Tejas Jhaveri;Vyacheslav Rovner;Lars Liebmann;Larry Pileggi;Andrzej J. Strojwas;Jason D. Hibbeler

  • Affiliations:
  • PDF Solutions, Pittsburgh, PA;PDF Solutions and Carnegie Mellon University, Pittsburgh, PA;Semiconductor Research and Development Center, IBM Microelectronics, Hopewell Junction, NY;Carnegie Mellon University, Pittsburgh, PA;Carnegie Mellon University, Pittsburgh, PA;Electronic Design Automation Organization, IBM, Williston, VT

  • Venue:
  • IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
  • Year:
  • 2010

Quantified Score

Hi-index 0.03

Visualization

Abstract

The financial backbone of the semiconductor industry is based on doubling the functional density of integrated circuits every two years at fixed wafer costs and die yields. The increasing demands for 'computational' rather than 'physical' lithography to achieve the aggressive density targets, along with the complex device-engineering solutions needed to maintain the power density objectives, have caused a rapid escalation in systematic yield limiters that threaten scaling. Specifically, the traditional contract between design and manufacturing based solely on design rules is no longer sufficient to guarantee functional silicon and instead requires a convoluted set of restrictions that force complex modifications to the already costly design flows. In this paper, we claim that a far superior result can be achieved by moving the design-to-manufacturing interface from design rules to a higher level of abstraction based on a defined set of pre-characterized layout templates. We will demonstrate how this methodology can simplify optical proximity correction and lithography processes for sub-32nm technology nodes, along with various digital block design examples for synthesized intellectual property (IP) cores. Furthermore, with a cost-per-good-die analysis we will show that this methodology will extend economical scaling to sub-32nm technology nodes.