Enhanced area cursors: reducing fine pointing demands for people with motor impairments

  • Authors:
  • Leah Findlater;Alex Jansen;Kristen Shinohara;Morgan Dixon;Peter Kamb;Joshua Rakita;Jacob O. Wobbrock

  • Affiliations:
  • University of Washington, Seattle, WA, USA;University of Washington, Seattle, WA, USA;University of Washington, Seattle, WA, USA;University of Washington, Seattle, WA, USA;University of Washington, Seattle, WA, USA;University of Washington, Seattle, WA, USA;University of Washington, Seattle, WA, USA

  • Venue:
  • UIST '10 Proceedings of the 23nd annual ACM symposium on User interface software and technology
  • Year:
  • 2010

Quantified Score

Hi-index 0.00

Visualization

Abstract

Computer users with motor impairments face major challenges with conventional mouse pointing. These challenges are mostly due to fine pointing corrections at the final stages of target acquisition. To reduce the need for correction-phase pointing and to lessen the effects of small target size on acquisition difficulty, we introduce four enhanced area cursors, two of which rely on magnification and two of which use goal crossing. In a study with motor-impaired and able-bodied users, we compared the new designs to the point and Bubble cursors, the latter of which had not been evaluated for users with motor impairments. Two enhanced area cursors, the Visual-Motor-Magnifier and Click-and-Cross, were the most successful new designs for users with motor impairments, reducing selection time for small targets by 19%, corrective submovements by 45%, and error rate by up to 82% compared to the point cursor. Although the Bubble cursor also improved performance, participants with motor impairments unanimously preferred the enhanced area cursors.