A high-quality low-delay remote rendering system for 3D video

  • Authors:
  • Shu Shi;Mahsa Kamali;Klara Nahrstedt;John C. Hart;Roy H. Campbell

  • Affiliations:
  • University of Illinois at Urbana-Champaign, Urbana, IL, USA;University of Illinois at Urbana-Champaign, Urbana, IL, USA;University of Illinois at Urbana-Champaign, Urbana, IL, USA;University of Illinois at Urbana-Champaign, Urbana, IL, USA;University of Illinois at Urbana-Champaign, Urbana, IL, USA

  • Venue:
  • Proceedings of the international conference on Multimedia
  • Year:
  • 2010

Quantified Score

Hi-index 0.00

Visualization

Abstract

As an emerging technology, 3D video has shown a great potential to become the next generation media for tele-immersion. However, streaming and rendering this dynamic 3D data in real-time requires tremendous network bandwidth and computing resources. In this paper, we build a remote rendering model to better study different remote rendering designs and define 3D video rendering as an optimization problem. Moreover, we design a 3D video remote rendering system that significantly reduces the delay while maintaining high rendering quality. We also propose a reference viewpoint prediction algorithm with super sampling support that requires much less computation resources but provides better performance than the search-based algorithms proposed in the related work.