Statistical timing yield optimization by gate sizing

  • Authors:
  • Debjit Sinha;Narendra V. Shenoy;Hai Zhou

  • Affiliations:
  • Department of Electrical Engineering and Computer Science, Northwestern University, Evanston, IL;Advanced Technology Group, Synopsys Inc., Mountain, View, CA;Department of Electrical Engineering and Computer Science, Northwestern University, Evanston, IL

  • Venue:
  • IEEE Transactions on Very Large Scale Integration (VLSI) Systems
  • Year:
  • 2006

Quantified Score

Hi-index 0.00

Visualization

Abstract

In this paper, we propose a statistical gate sizing approach to maximize the timing yield of a given circuit, under area constraints. Our approach involves statistical gate delay modeling, statistical static timing analysis, and gate sizing. Experiments performed in an industrial framework on combinational International Symposium on Circuits and Systems (ISCAS'85) and Microelectronics Center of North Carolina (MCNC) benchmarks show absolute timing yield gains of 30% on the average, over deterministic timing optimization for at most 10% area penalty. It is further shown that circuits optimized using our metric have larger timing yields than the same optimized using a worst case metric, for iso-area solutions. Finally, we present an insight into statistical properties of gate delays for a commercial 0.13- µm technology library which intuitively provides one reason why statistical timing driven optimization does better than deterministic timing driven optimization.