Using bus-based connections to improve field-programmable gate-array density for implementing datapath circuits

  • Authors:
  • Andy Ye;Jonathan Rose

  • Affiliations:
  • Department of Electrical and Computer Engineering, Ryerson University, Toronto, Canada;Department of Electrical and Computer Engineering, University of Toronto, Toronto, Canada

  • Venue:
  • IEEE Transactions on Very Large Scale Integration (VLSI) Systems
  • Year:
  • 2006

Quantified Score

Hi-index 0.00

Visualization

Abstract

As the logic capacity of field-programmable gate arrays (FPGAs) increases, they are increasingly being used to implement large arithmetic-intensive applications, which often contain a large proportion of datapath circuits. Since datapath circuits usually consist of regularly structured components (called bitslices) which are connected together by regularly structured signals (called buses), it is possible to utilize datapath regularity in order to achieve significant area savings through FPGA architectural innovations. This paper describes such an FPGA routing architecture, called the multibit routing architecture, which employs busbased connections in order to exploit datapath regularity. It is experimentally shown that, compared to conventional FPGA routing architectures, the multibit routing architecture can achieve 14% routing area reduction for implementing datapath circuits, which represents an overall FPGA area savings of 10%. This paper also empirically determines the best values of several important architectural parameters for the new routing architecture including the most area efficient granularity values and the most area efficient proportion of bus-based connections.