MECCA: a robust low-overhead PUF using embedded memory array

  • Authors:
  • Aswin Raghav Krishna;Seetharam Narasimhan;Xinmu Wang;Xinmu Wang

  • Affiliations:
  • Case Western Reserve University, Cleveland OH;Case Western Reserve University, Cleveland OH;Case Western Reserve University, Cleveland OH;Case Western Reserve University, Cleveland OH

  • Venue:
  • CHES'11 Proceedings of the 13th international conference on Cryptographic hardware and embedded systems
  • Year:
  • 2011

Quantified Score

Hi-index 0.00

Visualization

Abstract

The generation of unique keys by Integrated Circuits (IC) has important applications in areas such as Intellectual Property (IP) counter-plagiarism and embedded security integration. To this end, Physical Unclonable Functions (PUF) have been proposed to build tamperresistant hardware by exploiting random process variations. Existing PUFs suffer from increased overhead to the original design due to their specific functions for generating unique keys and/or routing constraints. In this paper, we propose a novel memory-cell based PUF (MECCA PUF), which performs authentication by exploiting the intrinsic process variations in read/write reliability of cells in static memories. The reliability of cells is characterized after manufacturing by inducing temporal failures, such as write and access failures in the cells using a programmable word line duty cycle controller. Since most modern designs already have considerable amount of embedded memory, the proposed approach incurs very little overhead (