Interconnect thermal modeling for accurate simulation of circuit timing and reliability

  • Authors:
  • Danqing Chen;Erhong Li;E. Rosenbaum;Sung-Mo Kang

  • Affiliations:
  • Technol. CAD, Intel Corp., Hillsboro, OR;-;-;-

  • Venue:
  • IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
  • Year:
  • 2006

Quantified Score

Hi-index 0.03

Visualization

Abstract

We apply three-dimensional finite element analysis to study the thermal coupling between nearby interconnects. We find that the temperature rise in current-carrying lines is significantly influenced by a dense array of lines in a nearby metal level. In contrast, thermal coupling between just two neighboring parallel lines is insignificant for most geometries. Design rules for average root-mean-square current density are provided for specific geometries given the requirement that the interconnect temperature be no more than 5°C above the substrate temperature. Semi-empirical formulae for coupling effects are presented based on the numerical results. A procedure is proposed to implement the formulae in computer-aided design tools