Architectural energy optimization by bus splitting

  • Authors:
  • Cheng-Ta Hsieh;M. Pedram

  • Affiliations:
  • Dept. of Electr. Eng. Syst., Univ. of Southern California, Los Angeles, CA;-

  • Venue:
  • IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
  • Year:
  • 2006

Quantified Score

Hi-index 0.04

Visualization

Abstract

This paper proposes split shared-bus architecture to reduce the energy dissipation for global data exchange among a set of interconnected modules. The bus splitting problem for minimum energy is formulated as a minimum-exchange bus split problem, which is shown to be NP-complete. The problem is solved heuristically by using a maximum-weight matching algorithm and combinatorial search. Experimental results show that the energy saving of split-bus architecture compared to monolithic-bus architecture varies from 16% to 50%, depending on the characteristics of the data transfer among the modules and the configuration of the split-bus. The proposed split-bus architecture can be extended to multiway split-bus architecture when large numbers of modules are to be connected