Performance Benefits of Monolithically Stacked 3-D FPGA

  • Authors:
  • M. Lin;A. El Gamal;Y. -C. Lu;S. Wong

  • Affiliations:
  • Dept. of Electr. Eng., Stanford Univ., CA;-;-;-

  • Venue:
  • IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
  • Year:
  • 2007

Quantified Score

Hi-index 0.03

Visualization

Abstract

The performance benefits of a monolithically stacked three-dimensional (3-D) field-programmable gate array (FPGA), whereby the programming overhead of an FPGA is stacked on top of a standard CMOS layer containing logic blocks (LBs) and interconnects, are investigated. A Virtex-II-style two-dimensional (2-D) FPGA fabric is used as a baseline architecture to quantify the relative improvements in logic density, delay, and power consumption achieved by such a 3-D FPGA. It is assumed that only the switch transistor and configuration memory cells can be moved to the top layers and that the 3-D FPGA employs the same LB and programmable interconnect architecture as the baseline 2-D FPGA. Assuming they are les 0.7, the area of a static random-access memory cell and switch transistors having the same characteristics as n-channel metal-oxide-semiconductor devices in the CMOS layer are used. It is shown that a monolithically stacked 3-D FPGA can achieve 3.2 times higher logic density, 1.7 times lower critical path delay, and 1.7 times lower total dynamic power consumption than the baseline 2-D FPGA fabricated in the same 65-nm technology node