Dynamic power management for multidomain system-on-chip platforms: An optimal control approach

  • Authors:
  • Paul Bogdan;Radu Marculescu;Siddharth Jain

  • Affiliations:
  • University of Southern California;Carnegie Mellon University;Indian Institute of Technology Kanpur

  • Venue:
  • ACM Transactions on Design Automation of Electronic Systems (TODAES) - Special Section on Networks on Chip: Architecture, Tools, and Methodologies
  • Year:
  • 2013

Quantified Score

Hi-index 0.00

Visualization

Abstract

Reducing energy consumption in multiprocessor systems-on-chip (MPSoCs) where communication happens via the network-on-chip (NoC) approach calls for multiple voltage/frequency island (VFI)-based designs. In turn, such multi-VFI architectures need efficient, robust, and accurate runtime control mechanisms that can exploit the workload characteristics in order to save power. Despite being tractable, the linear control models for power management cannot capture some important workload characteristics (e.g., fractality, nonstationarity) observed in heterogeneous NoCs; if ignored, such characteristics lead to inefficient communication and resources allocation, as well as high power dissipation in MPSoCs. To mitigate such limitations, we propose a new paradigm shift from power optimization based on linear models to control approaches based on fractal-state equations. As such, our approach is the first to propose a controller for fractal workloads with precise constraints on state and control variables and specific time bounds. Our results show that significant power savings can be achieved at runtime while running a variety of benchmark applications.