Proactive temperature balancing for low cost thermal management in MPSoCs

  • Authors:
  • Ayse Kivilcim Coskun;Tajana Simunic Rosing;Kenny C. Gross

  • Affiliations:
  • University of California, San Diego;University of California, San Diego;Sun Microsystems, San Diego

  • Venue:
  • Proceedings of the 2008 IEEE/ACM International Conference on Computer-Aided Design
  • Year:
  • 2008

Quantified Score

Hi-index 0.00

Visualization

Abstract

Designing thermal management strategies that reduce the impact of hot spots and on-die temperature variations at low performance cost is a very significant challenge for multiprocessor system-on-chips (MPSoCs). In this work, we present a proactive MPSoC thermal management approach, which predicts the future temperature and adjusts the job allocation on the MPSoC to minimize the impact of thermal hot spots and temperature variations without degrading performance. In addition, we implement and compare several reactive and proactive management strategies, and demonstrate that our proactive temperature-aware MPSoC job allocation technique is able to dramatically reduce the adverse effects of temperature at very low performance cost. We show experimental results using a simulator as well as an implementation on an UltraSPARC T1 system.