Power and reliability management of SoCs

  • Authors:
  • Tajana Simunic Rosing;Kresimir Mihic;Giovanni De Micheli

  • Affiliations:
  • Department of Computer Science Engineering, University of California at San Diego, La Jolla, CA;Stanford University, Stanford, CA;EPFL, Lausanne, Switzerland

  • Venue:
  • IEEE Transactions on Very Large Scale Integration (VLSI) Systems
  • Year:
  • 2007

Quantified Score

Hi-index 0.00

Visualization

Abstract

Today's embedded systems integrate multiple IP cores for processing, communication, and sensing on a single die as systems-on-chip (SoCs). Aggressive transistor scaling, decreased voltage margins and increased processor power and temperature have made reliability assessment a much more significant issue. Although reliability of devices and interconnect has been broadly studied, in this work, we study a tradeoff between reliability and power consumption for component-based SoC designs. We specifically focus on hard error rates as they cause a device to permanently stop operating. We also present a joint reliability and power management optimization problem whose solution is an optimal management policy. When careful joint policy optimization is performed, we obtain a significant improvement in energy consumption (40%) in tandem with meeting a reliability constraint for all SoC operating temperatures.