Power-aware scheduling and dynamic voltage setting for tasks running on a hard real-time system

  • Authors:
  • Peng Rong;Massoud Pedram

  • Affiliations:
  • University of Southern California, Los Angeles, CA;University of Southern California, Los Angeles, CA

  • Venue:
  • ASP-DAC '06 Proceedings of the 2006 Asia and South Pacific Design Automation Conference
  • Year:
  • 2006

Quantified Score

Hi-index 0.00

Visualization

Abstract

This paper addresses the problem of minimizing energy consumption of a computer system performing periodic hard real-time tasks with precedence constraints. In the proposed approach, dynamic power management and voltage scaling techniques are combined to reduce the energy consumption of the CPU and devices. The optimization problem is first formulated as an integer programming problem. Next, a three-phase solution framework, which integrates power management scheduling and task voltage assignment, is proposed. Experimental results show that the proposed approach outperforms existing methods by an average of 18% in terms of the systemwide energy savings.