Design methodology for semi custom processor cores

  • Authors:
  • Victor Zyuban;Sameh W. Asaad;Thomas W. Fox;Anne-Marie Haen;Daniel Littrell;Jaime H. Moreno

  • Affiliations:
  • IBM T.J. Watson Research Center, Yorktown Heights, NY;IBM T.J. Watson Research Center, Yorktown Heights, NY;IBM T.J. Watson Research Center, Yorktown Heights, NY;IBM T.J. Watson Research Center, Yorktown Heights, NY;IBM T.J. Watson Research Center, Yorktown Heights, NY;IBM T.J. Watson Research Center, Yorktown Heights, NY

  • Venue:
  • Proceedings of the 14th ACM Great Lakes symposium on VLSI
  • Year:
  • 2004

Quantified Score

Hi-index 0.00

Visualization

Abstract

We describe a semi-custom design methodology for embedded processor cores that was prototyped through the development of a low power high performance DSP core. When compared to the standard ASIC design flow, this methodology enables significant improvement in the speed and power; such benefits are obtained without compromising the generality and flexibility that characterizes the ASIC-based design techniques. Our methodology achieves fast turn-around time in the process from RTL description to post-PD timing results, and exhibits stable convergence on timing; these characteristics enable the application of optimizations spanning multiple levels of the design hierarchy. Such optimizations proved to be much more effective than those that focus only on a single design stage.