Real-time garbage collection for flash-memory storage systems of real-time embedded systems

  • Authors:
  • Li-Pin Chang;Tei-Wei Kuo;Shi-Wu Lo

  • Affiliations:
  • National Taiwan University, Taipei, Taiwan;National Taiwan University, Taipei, Taiwan;National Taiwan University, Taipei, Taiwan

  • Venue:
  • ACM Transactions on Embedded Computing Systems (TECS)
  • Year:
  • 2004

Quantified Score

Hi-index 0.00

Visualization

Abstract

Flash-memory technology is becoming critical in building embedded systems applications because of its shock-resistant, power economic, and nonvolatile nature. With the recent technology breakthroughs in both capacity and reliability, flash-memory storage systems are now very popular in many types of embedded systems. However, because flash memory is a write-once and bulk-erase medium, we need a translation layer and a garbage-collection mechanism to provide applications a transparent storage service. In the past work, various techniques were introduced to improve the garbage-collection mechanism. These techniques aimed at both performance and endurance issues, but they all failed in providing applications a guaranteed performance. In this paper, we propose a real-time garbage-collection mechanism, which provides a guaranteed performance, for hard real-time systems. On the other hand, the proposed mechanism supports non-real-time tasks so that the potential bandwidth of the storage system can be fully utilized. A wear-leveling method, which is executed as a non-real-time service, is presented to resolve the endurance problem of flash memory. The capability of the proposed mechanism is demonstrated by a series of experiments over our system prototype.