KD-tree acceleration structures for a GPU raytracer

  • Authors:
  • Tim Foley;Jeremy Sugerman

  • Affiliations:
  • Stanford University;Stanford University

  • Venue:
  • Proceedings of the ACM SIGGRAPH/EUROGRAPHICS conference on Graphics hardware
  • Year:
  • 2005

Quantified Score

Hi-index 0.00

Visualization

Abstract

Modern graphics hardware architectures excel at compute-intensive tasks such as ray-triangle intersection, making them attractive target platforms for raytracing. To date, most GPU-based raytracers have relied upon uniform grid acceleration structures. In contrast, the kd-tree has gained widespread use in CPU-based raytracers and is regarded as the best general-purpose acceleration structure. We demonstrate two kd-tree traversal algorithms suitable for GPU implementation and integrate them into a streaming raytracer. We show that for scenes with many objects at different scales, our kd-tree algorithms are up to 8 times faster than a uniform grid. In addition, we identify load balancing and input data recirculation as two fundamental sources of inefficiency when raytracing on current graphics hardware.