A power aware system level interconnect design methodology for latency-insensitive systems

  • Authors:
  • V. Chandra;H. Schmit;A. Xu;L. Pileggi

  • Affiliations:
  • Tabula Inc., Santa Clara, CA, USA;Tabula Inc., Santa Clara, CA, USA;Dept. of ECE, Northwestern Univ., Evanston, IL, USA;Dept. of Electr. & Comput. Eng., Toronto Univ., Ont., Canada

  • Venue:
  • Proceedings of the 2004 IEEE/ACM International conference on Computer-aided design
  • Year:
  • 2004

Quantified Score

Hi-index 0.00

Visualization

Abstract

Latency-insensitive interconnects require first-in-first-out buffers (FIFO) for flow-control and storage. Interconnect delays are not scaling in proportion to the clock period and hence multiple stages of FIFOs will be needed for high performance interconnects. FIFOs in the interconnect are a significant contributor to the total power consumption. In this work, we propose a design methodology to synthesize a low power interconnect channel containing series connected FIFOs for latency-insensitive systems. Our approach is the first to consider and simultaneously optimize the channel clock frequency, voltage and the FIFO sizes to minimize the power consumption. For small problem size, we show that our approach finds solutions which are close to optimal. The power aware interconnect channel synthesis is affected by the system parameters like the data production rate and data consumption rate. The choice of optimal channel clock frequency, voltage and FIFO sizes can lead to power savings as high as 77.7%, 83.6% and 87% for a 3 stage, 4 stage and a 5 stage channel respectively.