Enhanced symbolic simulation for efficient verification of embedded array systems

  • Authors:
  • Tao Feng;Li-C. Wang;Kwang-Ting Cheng;Manish Pandey;Magdy S. Abadir

  • Affiliations:
  • UC-Santa Barbara;UC-Santa Barbara;UC-Santa Barbara;Verplex Systems, Inc.;ASP High Performance Design, Motorola, Inc.

  • Venue:
  • ASP-DAC '03 Proceedings of the 2003 Asia and South Pacific Design Automation Conference
  • Year:
  • 2003

Quantified Score

Hi-index 0.00

Visualization

Abstract

In the past, Symbolic Trajectory Evaluation (STE) was shown to be effective for verifying individual array blocks. However, when applying STE to verify multiple array blocks together as a single system, the run-time OBDD sizes would often blow up. In this paper, we propose using a "dual-rail" symbolic simulation scheme to facilitate the application of STE proof methodology for verifying array systems. The proposed scheme implicitly partitions a given design into control domain and data-path domain, and symbolic simulation is carried out on both domains. With this scheme, the run-time OBDD sizes during the symbolic simulation for each domain can be limited. We demonstrate the effectiveness of our approach by verifying the Memory Management Unit (MMU) in Motorola high-performance microprocessors. The verification of MMU as a whole was not possible before because of the OBDD size blow-up problem when an ordinary symbolic simulator was used in the STE proof process.