Simultaneous shape decomposition and skeletonization

  • Authors:
  • Jyh-Ming Lien;John Keyser;Nancy M. Amato

  • Affiliations:
  • Texas A&M University;Texas A&M University;Texas A&M University

  • Venue:
  • Proceedings of the 2006 ACM symposium on Solid and physical modeling
  • Year:
  • 2006

Quantified Score

Hi-index 0.00

Visualization

Abstract

Shape decomposition and skeletonization share many common properties and applications. However, they are generally treated as independent computations. In this paper, we propose an iterative approach that simultaneously generates a hierarchical shape decomposition and a corresponding set of multi-resolution skeletons. In our method, a skeleton of a model is extracted from the components of its decomposition --- that is, both processes and the qualities of their results are interdependent. In particular, if the quality of the extracted skeleton does not meet some user specified criteria, then the model is decomposed into finer components and a new skeleton is extracted from these components. The process of simultaneous shape decomposition and skeletonization iterates until the quality of the skeleton becomes satisfactory. We provide evidence that the proposed framework is efficient and robust under perturbation and. deformation. We also demonstrate that our results can readily be used in problems including skeletal deformations and virtual reality navigation.