Efficient simulation of critical synchronous dataflow graphs

  • Authors:
  • Chia-Jui Hsu;Suren Ramasubbu;Ming-Yung Ko;José Luis Pino;Shuvra S. Bhattacharyya

  • Affiliations:
  • University of Maryland, College Park, MD;Agilent Technologies, Inc., Palo Alto, CA;University of Maryland, College Park, MD;Agilent Technologies, Inc., Palo Alto, CA;University of Maryland, College Park, MD

  • Venue:
  • Proceedings of the 43rd annual Design Automation Conference
  • Year:
  • 2006

Quantified Score

Hi-index 0.00

Visualization

Abstract

Simulation and verification using electronic design automation (EDA) tools are key steps in the design process for communication and signal processing systems. The synchronous dataflow (SDF) model of computation is widely used in EDA tools for system modeling and simulation in the communication and signal processing domains. Behavioral representations of practical wireless communication systems typically result in critical SDF graphs - they consist of hundreds of components (or more) and involve complex inter-component connections with highly multirate relationships (i.e., with large variations in average rates of data transfer or component execution across different subsystems). Simulating such systems using conventional SDF scheduling techniques generally leads to unacceptable simulation time and memory requirements on modern workstations and high-end PCs. In this paper, we present a novel simulation-oriented SDF scheduler (SOS) that strategically integrates several techniques for graph decomposition and SDF scheduling to provide effective, joint minimization of time and memory requirements for simulating large-scale and heavily multirate SDF graphs. We have implemented the SOS scheduler in the Advanced Design System (ADS) from Agilent Technologies. Our results from this implementation demonstrate large improvements in simulating real-world wireless communication systems (e.g. 3GPP, Bluetooth, 802.16e, CDMA 2000, and XM radio).