Practical variation-aware interconnect delay and slew analysis for statistical timing verification

  • Authors:
  • Xiaoji Ye;Peng Li;Frank Liu

  • Affiliations:
  • Texas A&M University, College Station, TX;Texas A&M University, College Station, TX;IBM Austin Research Lab, Austin, TX

  • Venue:
  • Proceedings of the 2006 IEEE/ACM international conference on Computer-aided design
  • Year:
  • 2006

Quantified Score

Hi-index 0.00

Visualization

Abstract

Interconnects constitute a dominant source of circuit delay for modern chip designs. The variations of critical dimensions in modern VLSI technologies lead to variability in interconnect performance that must be fully accounted for in timing verification. However, handling a multitude of inter-die/intra-die variations and assessing their impacts on circuit performance can dramatically complicate the timing analysis. In this paper, a practical interconnect delay and slew analysis technique is presented to facilitate efficient evaluation of wire performance variability. By harnessing a collection of computationally efficient procedures and closed-form formulas, process and input signal variations are directly mapped into the variability of the output delay and slew. Since our approach produces delay and slew expressions parameterized in the underlying process variations, it can be harnessed to enable statistical timing analysis while considering important statistical correlations. Our experimental results have indicated that the presented analysis is accurate regardless of location of sink nodes and it is also robust over a wide range of process variations.