WavePipe: parallel transient simulation of analog and digital circuits on multi-core shared-memory machines

  • Authors:
  • Wei Dong;Peng Li;Xiaoji Ye

  • Affiliations:
  • Texas A&M University, College Station, TX;Texas A&M University, College Station, TX;Texas A&M University, College Station, TX

  • Venue:
  • Proceedings of the 45th annual Design Automation Conference
  • Year:
  • 2008

Quantified Score

Hi-index 0.00

Visualization

Abstract

While the emergence of multi-core shared-memory machines offers a promising computing solution to ever complex chip design problems, new parallel CAD methodologies must be developed to gain the full benefit of these increasingly parallel computing systems. We present a parallel transient simulation methodology and its multi-threaded implementation for general analog and digital ICs. Our new approach, Waveform Pipelining (abbreviated as WavePipe), exploits coarsegrained application-level parallelism by simultaneously computing circuit solutions at multiple adjacent time points in a way resembling hardware pipelining. There are two embodiments in WavePipe: backward and forward pipelining schemes. While the former creates independent computing tasks that contribute to a larger future time step by moving backwards in time, the latter performs predictive computing along the forward direction of the time axis. Unlike existing relaxation methods, WavePipe facilitates parallel circuit simulation without jeopardying convergence and accuracy. As a coarse-grained parallel approach, WavePipe not only requires low parallel programming effort, more importantly, it creates new avenues to fully utilize increasingly parallel hardware by going beyond conventional finer grained parallel device model evaluation and matrix solutions.