A coaxial optical scanner for synchronous acquisition of 3D geometry and surface reflectance

  • Authors:
  • Michael Holroyd;Jason Lawrence;Todd Zickler

  • Affiliations:
  • Unversity of Virginia;University of Virginia;Harvard University

  • Venue:
  • ACM SIGGRAPH 2010 papers
  • Year:
  • 2010

Quantified Score

Hi-index 0.00

Visualization

Abstract

We present a novel optical setup and processing pipeline for measuring the 3D geometry and spatially-varying surface reflectance of physical objects. Central to our design is a digital camera and a high frequency spatially-modulated light source aligned to share a common focal point and optical axis. Pairs of such devices allow capturing a sequence of images from which precise measurements of geometry and reflectance can be recovered. Our approach is enabled by two technical contributions: a new active multiview stereo algorithm and an analysis of light descattering that has important implications for image-based reflectometry. We show that the geometry measured by our scanner is accurate to within 50 microns at a resolution of roughly 200 microns and that the reflectance agrees with reference data to within 5.5%. Additionally, we present an image relighting application and show renderings that agree very well with reference images at light and view positions far from those that were initially measured.