Fast separation of direct and global components of a scene using high frequency illumination

  • Authors:
  • Shree K. Nayar;Gurunandan Krishnan;Michael D. Grossberg;Ramesh Raskar

  • Affiliations:
  • Columbia University;Columbia University;City University of New York;MERL

  • Venue:
  • ACM SIGGRAPH 2006 Papers
  • Year:
  • 2006

Quantified Score

Hi-index 0.00

Visualization

Abstract

We present fast methods for separating the direct and global illumination components of a scene measured by a camera and illuminated by a light source. In theory, the separation can be done with just two images taken with a high frequency binary illumination pattern and its complement. In practice, a larger number of images are used to overcome the optical and resolution limitations of the camera and the source. The approach does not require the material properties of objects and media in the scene to be known. However, we require that the illumination frequency is high enough to adequately sample the global components received by scene points. We present separation results for scenes that include complex interreflections, subsurface scattering and volumetric scattering. Several variants of the separation approach are also described. When a sinusoidal illumination pattern is used with different phase shifts, the separation can be done using just three images. When the computed images are of lower resolution than the source and the camera, smoothness constraints are used to perform the separation using a single image. Finally, in the case of a static scene that is lit by a simple point source, such as the sun, a moving occluder and a video camera can be used to do the separation. We also show several simple examples of how novel images of a scene can be computed from the separation results.