Spill code minimization via interference region spilling

  • Authors:
  • Peter Bergner;Peter Dahl;David Engebretsen;Matthew O'Keefe

  • Affiliations:
  • IBM Rochester;SGI, Mountain View CA;University of Minnesota, Department of Electrical Engineering, Minneapolis, MN;University of Minnesota, Department of Electrical Engineering, Minneapolis, MN

  • Venue:
  • Proceedings of the ACM SIGPLAN 1997 conference on Programming language design and implementation
  • Year:
  • 1997

Quantified Score

Hi-index 0.00

Visualization

Abstract

Many optimizing compilers perform global register allocation using a Chaitin-style graph coloring algorithm. Live ranges that cannot be allocated to registers are spilled to memory. The amount of code required to spill the live range depends on the spilling heuristic used. Chaitin's spilling heuristic offers some guidance in reducing the amount of spill code produced. However, this heuristic does not allow the partial spilling of live ranges and the reduction in spill code is limited to a local level. In this paper, we present a global technique called interference region spilling that improves the spilling granularity of any local spilling heuristic. Our technique works above the local spilling heuristic, limiting the normal insertion of spill code to a portion of each spilled live range. By partially spilling live ranges, we can achieve large reductions in dynamically executed spill code; up to 75% in some cases and an average of 33.6% across the benchmarks tested.