The MOLEN rho-mu-Coded Processor

  • Authors:
  • Stamatis Vassiliadis;Stephan Wong;Sorin Cotofana

  • Affiliations:
  • -;-;-

  • Venue:
  • FPL '01 Proceedings of the 11th International Conference on Field-Programmable Logic and Applications
  • Year:
  • 2001

Quantified Score

Hi-index 0.00

Visualization

Abstract

In this paper, we introduce the MOLEN ρµ-coded processor which comprises hardwired and microcoded reconfigurable units. At the expense of three new instructions, the proposed mechanisms allow instructions, entire pieces of code, or their combination to execute in a reconfigurable manner. The reconfiguration of the hardware and the execution on the reconfigured hardware are performed by ρ-microcode (an extension of the classical microcode to allow reconfiguration capabilities). We include fixed and pageable microcode hardware features to extend the flexibility and improve the performance. The scheme allows partial reconfiguration and includes caching mechanisms for nonfrequently used reconfiguration and execution microcode. Using simulations, we establish the performance potential of the proposed processor assuming the JPEG and MPEG-2 benchmarks, the ALTERA APEX20K boards for the implementation, and a hardwired superscalar processor. After implementation, cycle time estimations and normalization, our simulations indicate that the execution cycles of the superscalar machine can be reduced by 30% for the JPEG benchmark and by 32% for the MPEG-2 benchmark using the proposed processor organization.