Hardware-Assisted Visibility Sorting for Unstructured Volume Rendering

  • Authors:
  • Steven P. Callahan;Milan Ikits;Joao L. D. Comba;Claudio T. Silva

  • Affiliations:
  • -;IEEE;-;IEEE

  • Venue:
  • IEEE Transactions on Visualization and Computer Graphics
  • Year:
  • 2005

Quantified Score

Hi-index 0.00

Visualization

Abstract

Harvesting the power of modern graphics hardware to solve the complex problem of real-time rendering of large unstructured meshes is a major research goal in the volume visualization community. While, for regular grids, texture-based techniques are well-suited for current GPUs, the steps necessary for rendering unstructured meshes are not so easily mapped to current hardware. We propose a novel volume rendering technique that simplifies the CPU-based processing and shifts much of the sorting burden to the GPU, where it can be performed more efficiently. Our hardware-assisted visibility sorting algorithm is a hybrid technique that operates in both object-space and image-space. In object-space, the algorithm performs a partial sort of the 3D primitives in preparation for rasterization. The goal of the partial sort is to create a list of primitives that generate fragments in nearly sorted order. In image-space, the fragment stream is incrementally sorted using a fixed-depth sorting network. In our algorithm, the object-space work is performed by the CPU and the fragment-level sorting is done completely on the GPU. A prototype implementation of the algorithm demonstrates that the fragment-level sorting achieves rendering rates of between one and six million tetrahedral cells per second on an ATI Radeon 9800.