Ultra-low duty cycle MAC with scheduled channel polling

  • Authors:
  • Wei Ye;Fabio Silva;John Heidemann

  • Affiliations:
  • USC Information Sciences Institute;USC Information Sciences Institute;USC Information Sciences Institute

  • Venue:
  • Proceedings of the 4th international conference on Embedded networked sensor systems
  • Year:
  • 2006

Quantified Score

Hi-index 0.02

Visualization

Abstract

Energy is a critical resource in sensor networks. MAC protocols such as S-MAC and T-MAC coordinate sleep schedules to reduce energy consumption. Recently, lowpower listening (LPL) approaches such as WiseMAC and B-MAC exploit very brief polling of channel activity combined with long preambles before each transmission, saving energy particularly during low network utilization. Synchronization cost, either explicitly in scheduling, or implicitly in long preambles, limits all these protocols to duty cycles of 1-2%. We demonstrate that ultra-low duty cycles of 0.1% and below are possible with a new MAC protocol called scheduled channel polling (SCP). This work prompts three new contributions: First, we establish optimal configurations for both LPL and SCP under fixed conditions, developing a lower bound of energy consumption. Under these conditions, SCP can extend lifetime of a network by a factor of 3-6 times over LPL. Second, SCP is designed to adapt well to variable traffic. LPL is optimized for known, periodic traffic, and long preambles become very costly when traffic varies. In one experiment, SCP reduces energy consumption by a factor of 10 under bursty traffic. We also show how SCP adapts to heavy traffic and streams data in multi-hop networks, reducing latency by 85% and energy by 95% at 9 hops. Finally, we show that SCP can operate effectively on recent hardware such as 802.15.4 radios. In fact, power consumption of SCP decreases with faster radios, but that of LPL increases.