Interactive ray tracing for volume visualization

  • Authors:
  • Steven Parker;Michael Parker;Yarden Livnat;Peter-Pike Sloan;Charles Hansen;Peter Shirley

  • Affiliations:
  • University of Utah, Salt Lake City, UT;University of Utah, Salt Lake City, UT;University of Utah, Salt Lake City, UT;University of Utah, Salt Lake City, UT;University of Utah, Salt Lake City, UT;University of Utah, Salt Lake City, UT

  • Venue:
  • SIGGRAPH '05 ACM SIGGRAPH 2005 Courses
  • Year:
  • 2005

Quantified Score

Hi-index 0.00

Visualization

Abstract

We present a brute-force ray tracing system for interactive volume visualization. The system runs on a conventional (distributed) shared-memory multiprocessor machine. For each pixel we trace a ray through a volume to compute the color for that pixel. Although this method has high intrinsic computational cost, its simplicity and scalability make it ideal for large datasets on current high-end parallel systems. To gain efficiency several optimizations are used including a volume bricking scheme and a shallow data hierarchy. These optimizations are used in three separate visualization algorithms: isosurfacing of rectilinear data, isosurfacing of unstructured data, and maximum-intensity projection on rectilinear data. The system runs interactively (i.e., several frames per second) on an SGI Reality Monster. The graphics capabilities of the Reality Monster are used only for display of the final color image.