A Near Optimal Isosurface Extraction Algorithm Using the Span Space

  • Authors:
  • Yarden Livnat;Han-Wei Shen;Christopher R. Johnson

  • Affiliations:
  • -;-;-

  • Venue:
  • IEEE Transactions on Visualization and Computer Graphics
  • Year:
  • 1996

Quantified Score

Hi-index 0.00

Visualization

Abstract

We present the "Near Optimal IsoSurface Extraction" (NOISE) algorithm for rapidly extracting isosurfaces from structured and unstructured grids. Using the span space, a new representation of the underlying domain, we develop n isosurface extraction algorithm with a worst case complexity of $O\left ({\sqrt n} + k\right )$ for the search phase, where n is the size of the data set and k is the number of cells intersected by the isosurface. The memory requirement is kept at O(n) while the preprocessing step is O(n log n). We utilize the span space representation as a tool for comparing isosurface extraction methods on structured and unstructured grids. We also present a fast triangulation scheme for generating and displaying unstructured tetrahedral grids.