A general framework for spatial correlation modeling in VLSI design

  • Authors:
  • Frank Liu

  • Affiliations:
  • IBM Austin Research Lab, Austin, TX

  • Venue:
  • Proceedings of the 44th annual Design Automation Conference
  • Year:
  • 2007

Quantified Score

Hi-index 0.00

Visualization

Abstract

Many characteristics of VLSI designs, such as process variations, demonstrate strong spatial correlations. Accurately modeling of these correlated behaviors is crucial for many timing and power analyses to be valid. This paper proposes a new spatial model with a long-range trend component, a smooth correlation component, as well as a truly random component. The efficient method to construct such a spatial model is based on the Generalized Least Square fitting and the structured correlation functions, which are actually the generalization of the popular Pelgrom mismatch models. Experimental results on industrial benchmarks show that the method is not only highly effective for variability modeling, but can also be used for other spatially distributed characteristics such as IR drops and on-chip temperature distributions.