A framework for scalable postsilicon statistical delay prediction under process variations

  • Authors:
  • Qunzeng Liu;Sachin S. Sapatnekar

  • Affiliations:
  • Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN;Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN

  • Venue:
  • IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
  • Year:
  • 2009

Quantified Score

Hi-index 0.03

Visualization

Abstract

Due to increased variability trends in nanoscale integrated circuits, statistical circuit analysis and optimization has become essential. While statistical timing analysis has an important role to play in this process, it is equally important to develop die-specific delay prediction techniques using postsilicon measurements. We present a novel method for postsilicon delay analysis. We gather data from a small number of on-chip test structures, and combine this information with presilicon statistical timing analysis to obtain narrow die-specific timing probability density function (PDF). Experimental results show that for the benchmark suite being considered, taking all parameter variations into consideration, our approach can obtain a PDF whose standard deviation is 79.0% smaller, on average, than the statistical timing analysis result. The accuracy of the method defined by our metric is 99.6% compared to Monte Carlo simulation. The approach is scalable to smaller test structure overheads and can still produce acceptable results.