ATPG for heat dissipation minimization during test application

  • Authors:
  • Seongmoon Wang;Sandeep K. Gupta

  • Affiliations:
  • Electrical Engineering-Systems, University of Southern California, Los Angeles, CA;Electrical Engineering-Systems, University of Southern California, Los Angeles, CA

  • Venue:
  • ITC'94 Proceedings of the 1994 international conference on Test
  • Year:
  • 1994

Quantified Score

Hi-index 0.00

Visualization

Abstract

A new ATPG algorithm has been proposed that reduces average heat dissipation (between successive test vectors) during test application. The objective is to permit safe and inexpensive testing of low power circuits and bare dies that would otherwise require expensive heat removal equipment for testing at high speeds. Three new functions, namely transition controllability, observability and test generation costs, have been defined. It has been shown that the transition test generation cost is the minimum number of transitions required to test the corresponding stuck-at fault in fanout free circuits. This cost function is used for target fault selection while the other two functions are used to guide the backtrace and objective selection procedures of PODEM. The tests generated by the proposed ATPG decrease heat dissipation during test application by a factor of 2-23 for benchmark circuits.