Interactive global illumination using fast ray tracing

  • Authors:
  • Ingo Wald;Thomas Kollig;Carsten Benthin;Alexander Keller;Philipp Slusallek

  • Affiliations:
  • Saarland University;Kaiserslautern University;Saarland University;Kaiserslautern University;Saarland University

  • Venue:
  • EGRW '02 Proceedings of the 13th Eurographics workshop on Rendering
  • Year:
  • 2002

Quantified Score

Hi-index 0.00

Visualization

Abstract

Rasterization hardware provides interactive frame rates for rendering dynamic scenes, but lacks the ability of ray tracing required for efficient global illumination simulation. Existing ray tracing based methods yield high quality renderings but are far too slow for interactive use. We present a new parallel global illumination algorithm that perfectly scales, has minimal preprocessing and communication overhead, applies highly efficient sampling techniques based on randomized quasi-Monte Carlo integration, and benefits from a fast parallel ray tracing implementation by shooting coherent groups of rays. Thus a performance is achieved that allows for applying arbitrary changes to the scene, while simulating global illumination including shadows from area light sources, indirect illumination, specular effects, and caustics at interactive frame rates. Ceasing interaction rapidly provides high quality renderings.